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The well known barometric formula of Laplace 

P=&e”P[- $1 (1) 

is a Particular, and by no means complete, example of the application of 

Boltzmann' s general formula 

n P=Poexp -p [ 1 (21 
where n is the potential energy of the particle and T the absolute temper- 

ature, identical for all the parts of the region, to which the distribu- 

tion of the density p is related. However, the state of the system, though 

stationary in the thermal sense, need not necessarily be isothermal. 

Below we will investigate an infinite body whose particles are subjected 

only to forces of mutual attraction in accordance with Newton’s law. The 

equation of state need not be specified, it can be arbitrary. In the end 

some state of the system will be established, and it will necessarily 

possess spherical symmetry (we assume an infinite number of particles). 

A nonlinear integral equation is derived, connecting distribution of 

temperature with distribution of density. Knowing the distribution of the 

one, the distribution of the other can be obtained from this equation. For 

the Clapeyron state the problem can easily be carried through to completion. 

The above formulas (1) and (2) are obtained as particular cases for the 

isothermal state. 

Let us investigate a gaseous body consisting of a great number of 

particles each of mass I mutually attracted according to the law 

592 



On the stationary distribution of mutually attracting particles 543 

(here y is the gravitational constant). In formula (3) one would like to 

write the more general 1” instead of l2 for Newtonian attraction with a 

view to applying this investigation to the micro-phenomena of molecular 

and atomic order also, for instance to the case of Van-der-Waals action 

and exchange forces. In that case, however, we cannot use that particular 

feature of Newtonian attraction of a spherical layer which is the basis 

of the derivation that follows. Such a generalization would complicate 

the calculations. 

On achieving a stationary state, the gas inevitably assumes a form of 

spherical symmetry around the center of mass. This state will be considered. 

Let 0 be the center of mass. Let us envisage a solid angle do with its 

apex at 0 and a volume element in it between the spherical surfaces of 

radii a and a + da. 

If the gas density in this volume is p(a), then its mass is 

p (a) a2 dw da (4) 

The resultant action of all forces of attraction on that portion of 

the gas is as if it were attracted only by the gas contained in a sphere 

of radius a, and as if the (attracting) gas were concentrated in the 

center 0 of the sphere. 

The attracting mass is equal to 

On the basis of (3). the force of attraction between masses (4) and 

(5) is 

YP (a) da da j P (P) 4+ dB 

0 

(6) 

Now imagine a spherical surface with center in 0 and radius r, and con- 

sider the portion contained within the solid angle do. The area of this 

portion is r2do. Above r2do is the totality of elementary volumes of 

infinite extent, each with a mass given by (4) for a >/ r, and each being 

attracted to 0 by a force (6). These forces add up to create the force of 

pressure on area r2do, equal to 

r 0 

Dividing (7) by the area r2do, we obtain the gas pressure p(r) at a 
distance r from the center of mass: 
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r 0 

On the other hand, assume that the state of the gas is described by 

the equation 

P = cp (PI T) !9., 

where, on account of the stationary state and symmetry p and T can only 
depend on r. 

Substituting (9) in (8) we obtain 

r~PIP(r).T(r)l=y~~(a)d.iP(B)4.8.dB 
r 0 

For a given temperature distribution the distribution 

(IO, 

of density p(r) 
can be obtained from_ this nonlinear integral equation, and vice versa. 

In the case of a state according to the Clapeyron equation, for instance 
(10) becomes 

03 a 

T (r) p (r) 4x+ = yF s P (a) 4=se da 
aa s 

p (b) 4,+2 @ 

r 0 

(11) 

Let us note that 
z 

s P (0 4sC’ dC = M (2) (12) 

0 
is the mass of gas in a sphere of radius t. It follows from (12) that 

p (2) 4x29 = M’ (2) 

Bearing in mind (12) and (13). we can present (11) as 

rla 

(13) 

(l(1) 

Differentiating, we obtain 

This ordinary differential equation, of second-order with respect to 
M and of first order with respect to T. connects the mass distribution 
with the temperature distribution of an ideal gas in a stationary thermal 
state. Either of these two distributions can be determined from the other. 

With respect to M, equation (15) is reduced to a type of LiouVille 
equation which cannot be integrated in finite form. But let us imagine 
that the gas sphere has a kernel of radius r. and mass MO so large that 
the outer gas mass will appear infinitely small in comparison. Equation 
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(15) can then be presented in the form 

TMR’=- [;+TjM’. -=a, [a] = deg cm (15) 

(18) 

For a given T(r), this equation is easily solved. Actually It Is suffl- 
cient to obtain from it M’(r). and then use (151 to ffnd p(r). 

But let us first clarify the question of temperature dlatribution. 

Let us investigate an Infinitely thin epherical layer with surface 
radii r and r + dr. In a stationary state the temperature will be T(r). 
We will denote the coefficient of thermal conductivity by u and aalume it 
to be independent of r, 

Through the surface r + dr an amount of heat 

- 4x8 [r%T’ (r)lrw 

will flow in unit time, 

(17) 

Through the surface r, an amount of heat 

will flow in unit time. 
-4~ [r*T' (r)lr 

Consequently an amount of heat 

4no {[r*T’],+,, - [+T’],} or 4~0 [+T’] dr (19) 

will be added to the layer In unit time. 

If this amount were not identically zero the state could not be sta- 
tionary. The requirement of a stationary state leads to the Laplace equa- 
tion (for spherical symmetry). 

[r*T’]’ = 0 W) 
Its general solution Is 

T (rl= 7 A+B (21) 

where A and B are arbitrary constants defined by boundary conditions. 

For instance, let there be a layer between rurfaces of radii Ri and 

Q2 lro \( RI ( R2), maintained at a constant temperature P by a permanently 
acting radio-isotopic radiation uniformly distributed in this layer. Let 
a constant temperature To be maintained on the surface ro, Further, let 
T(r) + 0 for r + ~0. For this case a simple calculation will yield 

T (P) = RIT* (r - ro) + roTo (RI - r) 
(RI - r0) r 

(r0 C r Q RI) (22) 



596 A.N. Gerasimov 

= T* 

R2T* 
=- 

r 

(RI<~=G’R?) (23) 

(r > R) (24) 

In particular, if R2 = Ri = r0 and T*= T and T + 0 for r -+ m, we will 
have a monotonic decrease of temperature fro: To to 0, according to the 
hyperbolic law. 

T (r) = ‘$ (r 3 r0) (25) 

Subsequently we will confine ourselves to this particular temperature 
distribution. 

From equation (16). on the basis of (13), we derive the fOllOWing: 

or 

According to (16) this yields 

p (r) = p (ro)z$ exp [In 5 - --& In &] 

P (4 = dr0) F exp 
[ 
-r& in 

i 
i + !Z$?_‘ 

)I 

Noting that r - rO = huis the height above ro, which is considered 
small by comparison with rq, we can assume 

In I+? 
i 

,h 
r0 > r0 

(26) 

(27 

(28) 

(2% 

Finally, making use of (16) and of the fact that 

YMom 
r,-=mg (30) 

represents the weight of the particle of mass s, instead of (28) we ob- 
tain 

p(r)=p(ro)Fexp -m&t 
[ I 

Identification of r with ru leads to the Laplace formula (1). 

(31) 

Translated by J.S. 


